Skip to main content

More powerful Pixhawk 3 coming soon

Posted by Chris Anderson on April 25, 2017 at 7:00am View Blog
.
The PX4/Dronecode team and Drotek have been working on the next generation of Pixhawk autopilots, and you can now see a preview of that with the Pixhawk 3 Pro. It's based on the new PX4 FMU4 Pro standard, which includes a full suite of next-generation sensors and and the more powerful STM32F469 processor. It's designed for the Dronecode/PX4 flight software, which is the current official Pixhawk standard.
The board is currently in developer release, but will be taken out of beta after testing is complete in the next month or two.
All details are here (and below):
------------------
Introduction
FMUv4-PRO takes input from all of the Pixhawk stakeholders; end users, developers, researchers and manufacturing partners. Goals for this iteration of the platform are:
  • – An integrated, single-board flight controller for space constrained applications
  • – A modular multi-board flight controller for professional applications
  • – Sufficient I/O for most applications without expansion.
  • – Improved ease-of-use.
  • – Improved sensor performance
  • – Improved microcontroller resources (384 KB RAM, 2 MB flash).
  • – Increased reliability and reduced integration complexity.
  • – Reduced BoM and manufacturing costs.

Key design points
  • – All-in-one design with integrated FMU and optional IO and lots of I/O ports.
  • – Improved manufacturability, designed for simpler mounting and case design.
  • – Separate power supplies for FMU and IO (see power architecture section).
  • – Onboard battery backup for FMU and IO SRAM / RTC.
  • – Integration with two standard power bricks.

Technology upgrades
  • – Microcontroller upgrade to STM32F469; flash increases from 1MiB to 2MiB, RAM increases from 256KiB to 384KiB, more peripheral ports.
  • – ICM-20608, MPU9K integrated gyro / accelerometer / magnetometers.
  • – LIS3MDL compass (HMC5983 is now obsolete).
  • – Sensors connected via two SPI buses (one high rate and one low-noise bus)
  • – Two I2C buses
  • – Two CAN buses
  • – Voltage / battery readings from two power modules
  • – FrSky Inverter
  • – JST GH user-friendly connectors

I/O ports
  • – 6-14 PWM servo outputs (8 from IO, 6 from FMU).
  • – R/C inputs for CPPM, Spektrum / DSM and S.Bus.
  • – Analog / PWM RSSI input.
  • – S.Bus servo output.
  • – 6 general purpose serial ports, 2 with full flow control, 1 with separate 1A current limit, 1 with FrSky protocol inverter.
  • – Two I2C ports.
  • – Two external SPI ports (unbuffered, for short cables only).
  • – Two CANBus interfaces.
  • – Analog inputs for voltage / current of two batteries
  • – On-ground usage piezo buzzer driver.
  • – Sensor upgrade connector scheme
  • – High-power RGB LED.
  • – Safety switch / LED.

Mechanical Form Factor
  • – 71 x 49 x 23 mm (with case)
  • – 45g (with case)
  • – Standardized microUSB connector location
  • – Standardized RGB led location
  • – Standardized connector locations

System architecture
FMUv4-PRO continues the PX4FMU+PX4IO architecture from the previous generation, incorporating the two functional blocks in a single physical module.

PWM Outputs
Eight PWM outputs are connected to IO and can be controlled by IO directly via R/C input and onboard mixing even if FMU is not active (failsafe / manual mode). Multiple update rates can be supported on these outputs in three groups; one group of four and two groups of two. PWM signal rates up to 400Hz can be supported.
Six PWM outputs are connected to FMU and feature reduced update latency. These outputs cannot be controlled by IO in failsafe conditions. Multiple update rates can be supported on these outputs in two groups; one group of four and one group of two. PWM signal rates up to 400Hz can be supported.
All PWM outputs are ESD-protected, and they are designed to survive accidental mis-connection of servos without being damaged. The servo drivers are specified to drive a 50pF servo input load over 2m of 26AWG servo cable. PWM outputs can also be configured as individual GPIOs. Note that these are not high-power outputs – the PWM drivers are designed for driving servos and similar logic inputs only, not relays or LEDs.

Peripheral Ports
FMUv4-PRO recommends separate connectors for each of the peripheral ports (with a few exceptions). This avoids the issues many users reported connecting to the 15-pin multi-IO port on the original PX4FMU-PRO and allows single-purpose peripheral cables to be manufactured.
Five serial ports are provided. TELEM 1, 2 and 3 feature full flow control. TELEM4 can be switched into inverted mode by hardware and has no flow control. Serial ports are 3.3V CMOS logic level, 5V tolerant, buffered and ESDprotected.
The SPI ports are not buffered; they should only be used with short cable runs. Signals are 3.3V CMOS logic level, but 5V tolerant.
Two power modules (voltage and current for each module) can be sampled by the main processor.
The RSSI input supports either PWM or analog RSSI. CPPM, S.Bus and DSM/ Spektrum share now a single port and are auto-detected in software.
The CAN ports are standard CANBus; termination for one end of the bus is fixed onboard. .

Sensors
The new ICM-20608 has been positioned by Invensense as higher-end successor of the MPU-6000 series. The software also supports the MPU-9250, which allows a very cost-effective 9D solution.
Data-ready signals from all sensors (except the MS5611, which does not have one) are routed to separate interrupt and timer capture pins on FMU. This will permit precise time-stamping of sensor data.
The two external SPI buses and six associated chip select lines allow to add additional sensors and SPI-interfaced payload as needed.
IMU is isolated from vibrations.
Power Architecture
Key features of the FMUv4-PRO power architecture:
  • – Single, independent 5V supply for the flight controller and peripherals.
  • – Integration with two standard power bricks, including current and voltage sensing.
  • – Low power consumption and heat dissipation.
  • – Power distribution and monitoring for peripheral devices.
  • – Protection against common wiring faults; under/over-voltage protection, overcurrent protection, thermal protection.
  • – Brown-out resilience and detection.
  • – Backup power for IO in the case of FMU power supply failure.
  • – Split digital and analog power domains for FMU and sensors.

FMU and IO Power Supplies
Both FMU and IO operate at 3.3V, and each has its own private dual-channel regulator. In order to address issues seen with PX4v1 and noisy power supply connections, each regulator features a power-on reset output tied to the regulator’s internal power-up and drop-out sequencing.
The second channel of each dual regulator is switchable under software control. For FMU this is used to permit power-cycling the sensors (in case of sensor lockup), and for IO this will make it possible to perform the Spektrum binding sequence.

Power Sources
Power may be supplied to FMUv4-PRO via USB (no peripherals in this mode) or via the power brick ports. Each power source is protected against reverse-polarity connections and back-powering from other sources. Power spikes observed on the servo bus (up to 10V) led to the removal of the power-from-servo option, users wanting this feature can connect the servo rail with a cable containing a Zener diode to the 2nd power brick port.
The FMU + IO power budget is 250mA, including all LEDs and the Piezo buzzer. Peripheral power is limited to 2A total.

Power Brick Port
The brick port is the preferred power source for FMUv4-PRO, and brick power will be always be selected if it is available.

Servo Power
FMUv4-PRO supports both standard (5V) and high-voltage (up to 10V) servo power with some restrictions. IO will accept power from the servo connector up to 10V. This allows IO to fail-over to servo power in all cases if the main power supply is lost or interrupted. FMUv4-PRO and peripherals combined may draw up to 2A total.
Power is never supplied by FMUv4 to servos.

USB Power
Power from USB is supported for software update, testing and development purposes. USB power is supplied to the peripheral ports for testing purposes, however total current consumption must typically be limited to 500mA, including peripherals, to avoid overloading the host USB port.

Multiple Power Sources
When more than one power source is connected, power will be drawn from the highest-priority source with a valid input voltage.
In most cases, FMU should be powered via the power brick or a compatible offboard regulator via the brick port or servo power rail.
In desktop testing scenarios, taking power from USB avoids the need for a BEC or similar servo power source (though servos themselves will still need external power).

Summary
For each of the components listed, the input voltage ranges over which the device can be powered from each input is shown.

Brick ports
Servo rail
USB port
    FMU
4 – 5.7V
no
yes
    IO
4 – 5.7V
4 – 10V
yes
    Peripherals
4 -5.7V, 2A max
4 – 5.7V, 250mA max
yes, 500 mA max

Peripheral Power :
FMUv4-PRO provides power routing, over/under voltage detection and protection, filtering, switching, current-limiting and transient suppression for peripherals.
Power outputs to peripherals feature ESD and EMI filtering, and the power supply protection scheme ensures that no more than 5.5V is presented to peripheral devices. Power is disconnected from the peripherals when the available supply voltage falls below 4V, or rises above approximately 5.7V.
Peripheral power is split into two groups:
  • – TELEM 1 has a private 1A current limit, intended for powering a telemetry radio. This output is separately EMI filtered and draws directly from the USB / Brick inputs. Due to the noise induced by radios powering a radio from this port is not advised.
  • – All other peripherals share a 1A current limit and a single power switch.
Each group is individually switched under software control.
The Spektrum / DSM R/C interface draws power from the same sources as IO, rather than from either of the groups above. This port is switched under software control so that Spektrum / DSM binding can be implemented. Spektrum receivers generally draw ~25mA, and this is factored into the IO power budget. S.Bus and CPPM receivers are supported on this rail as well.

Battery Backup :
Both the FMU and IO microcontrollers feature battery-backed realtime clocks and SRAM. The onboard backup battery has capacity sufficient for the intended use of the clock and SRAM, which is to provide storage to permit orderly recovery from unintended power loss or other causes of in-air restarts. The battery is recharged from the FMU 3.3V rail.

Voltage, Current and Fault Sensing :
The battery voltage and current reported by the power brick can be measured by FMU. In addition, the 5V unregulated supply rail can be measured (to detect brown-out conditions). IO can measure the servo power rail voltage.
Over-current conditions on the peripheral power ports can be detected by the FMU. Hardware lock-out prevents damage due to persistent short-circuits on these ports. The lock-out can be reset by FMU software.
The under/over voltage supervisor for FMU provides an output that is used to hold FMU in reset during brown-out events.

EMI Filtering and Transient Protection :
EMI filtering is provided at key points in the system using high-insertion-loss passthrough filters. These filters are paired with TVS diodes at the peripheral connectors to suppress power transients.
Reverse polarity protection is provided at each of the power inputs.
USB signals are filtered and terminated with a combined termination/TVS array.
Most digital peripheral signals (all PWM outputs, serial ports, I2C port) are driven using feature series blocking resistors to reduce the risk of damage due to transients or accidental mis-connections.
Inputs / Outputs

Tags: electronic, autopilot, flight, uav4africa

Comments

Popular posts from this blog

Setting up the Tarot T4-3D gimbal on the Pixhawk 2.4.8 with Specktrum dx6 Gen2 toggle switch

So i took the challenge of setting up the Tarot gimbal not just for inherent stable video footage but also the flexibility of controlling it from the radio control. However, I encountered quite a few challenges which made me aware that I'm not the one only in this battle . It's quite clear that the setup of the Tarot gimbal using its own software is completely different from how it's been described in the Ardupilot/Arducopter webpage and in mission Planner. In Mission Planner and it's associated site makes one believe that it should be done through software, only to realize that in actual fact the setup is more complex than that.  After two evenings of trying various combinations, I realized the getting the pixhawk Aux channels to communicate with the T4 gimbal requires the following steps: - The Pixhawk Pin9 (Aux1) needed to be activated to pass through user-chosen channel from the transmitter. For the Dx6 Gen2 it was the channel 6, which can assigned the

Matlab to C/C++ code development - Some learning points

Over the last few years, the engineers at the company have invested both their time and sleepless nights in formulating a process for the development of Machine learning algorithms that will satisfy real-time constraints with minimal RAM usage. This is quite a tall task as per default, that would force one to do their development directly in C language. Although that seems like the right choice, the downside is the direct correlation of the debugging time with algorithm complexity.  Such a time could have been rather used in optimizing the algorithm within the MATLAB environment which has excellent tools for the analysis, plotting and debugging. So it was decided to rather learn the Code generation process with the hope that future algorithm could be designed in a similar fashion without the hassle of the compiler-specific run-time issues. The development of this machine learning algorithm would eventually be implemented in a 32bit, 160Mhz speed, 260KB RAM microcontroller.

The hard climb of innovation

For the last couple of months, our design team has been hard at work at detail development of our drone concept which we hope to make public early 2021. These have been unprecedented times with so many changes within our company: people moving countries, stuck at airports, universities closing and transitioning to online classes and exams; all in the space of one year! Nevertheless, one of the fundamental challenges facing the drone industry in developing countries next year, is how to operate within an environment where shipping of critical parts (amongst other things) has been disrupted due to the covid-19 pandemic. If the most critical items (propellers, batteries, sensors, etc. ) of the system are also associated with the longest lead time, this has a significant impact on the operating cost and service coverage that can be achieved. Unfortunately, there's no easy way of solving this issue except if it was envisioned as part of the development process. But this is seldom the ca