Skip to main content

HILS Preparation Test

So having concluded the first few flight tests and achieved a aircraft platform that will be suitable to test the first version of the autopilot, the time came to start the HILS (hardware-in-the-loop simulation) phase.

The first step was to make sure that the ESC (electronic speed controller) will be able to supply current and the motor could still be controlled by the transmitter. 

The next step was to connect the Rx and Tx to the autopilot board and have the display of signals coming to the board via the Serial Monitor. These inputs will in turn be converted to servo object angle inputs. The reason this is required is two fold:

  1. The Arduino IDE already has a servo library. So converting the pulses coming from the input channels to servo angles will be transmitted to the servo).
  2. The simplicity of this route will enable easy debugging in the event improper relaying of signals does not occur.
The end goal of the HILS test is to establish a level of confidence that the board processes the signals as expected in a safe environment and the logging sequence is performed correctly prior to the first logged flight.

The glider airframe still requires a number of transmitter-controlled flights as to better understand its dynamic behaviour. 

The next few posts will be HILS setup layout with test results (hopefully). 

Comments

Popular posts from this blog

Setting up the Tarot T4-3D gimbal on the Pixhawk 2.4.8 with Specktrum dx6 Gen2 toggle switch

So i took the challenge of setting up the Tarot gimbal not just for inherent stable video footage but also the flexibility of controlling it from the radio control. However, I encountered quite a few challenges which made me aware that I'm not the one only in this battle . It's quite clear that the setup of the Tarot gimbal using its own software is completely different from how it's been described in the Ardupilot/Arducopter webpage and in mission Planner. In Mission Planner and it's associated site makes one believe that it should be done through software, only to realize that in actual fact the setup is more complex than that.  After two evenings of trying various combinations, I realized the getting the pixhawk Aux channels to communicate with the T4 gimbal requires the following steps: - The Pixhawk Pin9 (Aux1) needed to be activated to pass through user-chosen channel from the transmitter. For the Dx6 Gen2 it was the channel 6, which can assigned the

Matlab to C/C++ code development - Some learning points

Over the last few years, the engineers at the company have invested both their time and sleepless nights in formulating a process for the development of Machine learning algorithms that will satisfy real-time constraints with minimal RAM usage. This is quite a tall task as per default, that would force one to do their development directly in C language. Although that seems like the right choice, the downside is the direct correlation of the debugging time with algorithm complexity.  Such a time could have been rather used in optimizing the algorithm within the MATLAB environment which has excellent tools for the analysis, plotting and debugging. So it was decided to rather learn the Code generation process with the hope that future algorithm could be designed in a similar fashion without the hassle of the compiler-specific run-time issues. The development of this machine learning algorithm would eventually be implemented in a 32bit, 160Mhz speed, 260KB RAM microcontroller.

Setup ArduPilot flight modes with DX6 Gen 2

Hi, I've looked around the web to get an understanding the setup of the Ardupilot flight modes with a Spektrum DX6 2nd generation and there was none. So I decided to write this blog. The few things to consider when doing this: Please follow the instruction given on the ardupilot webpage . Have the Pixhawk hardware connected to Mission Planner (I have 1.3.50 - Copter V3.5.3)  Use the display bar in the Radio Calibration page as a guide while changing the rate pulse widths on your transmitter. I've used switch D to change the pulse width ranges on channel 5.