Skip to main content

It finally clicked!

So I had a brainwave the past two days in how to test various aspects of the autopilot modes without having to land and flash new software.

It became very frustrating that for each morning,
I had to land the aircraft 5-6 times and increase the risks crashing and even worse loosing the instrumentation on board the glider.

This approach could potentially allow me to analyze various options of flight modes and optimize which one best suited for that function. The ultimate goal is of course, the speed at which each flight modes can tested.

So I manage to devise a method that allows me to use a switching mechanism such that I can switch between each programmed flight modes by using transmitter only.

The code was tested and seems to work just fine. Now it's just a matter of testing in flight.

Comments

Popular posts from this blog

Setting up the Tarot T4-3D gimbal on the Pixhawk 2.4.8 with Specktrum dx6 Gen2 toggle switch

So i took the challenge of setting up the Tarot gimbal not just for inherent stable video footage but also the flexibility of controlling it from the radio control. However, I encountered quite a few challenges which made me aware that I'm not the one only in this battle . It's quite clear that the setup of the Tarot gimbal using its own software is completely different from how it's been described in the Ardupilot/Arducopter webpage and in mission Planner. In Mission Planner and it's associated site makes one believe that it should be done through software, only to realize that in actual fact the setup is more complex than that.  After two evenings of trying various combinations, I realized the getting the pixhawk Aux channels to communicate with the T4 gimbal requires the following steps: - The Pixhawk Pin9 (Aux1) needed to be activated to pass through user-chosen channel from the transmitter. For the Dx6 Gen2 it was the channel 6, which can assigned the ...

The hard climb of innovation

For the last couple of months, our design team has been hard at work at detail development of our drone concept which we hope to make public early 2021. These have been unprecedented times with so many changes within our company: people moving countries, stuck at airports, universities closing and transitioning to online classes and exams; all in the space of one year! Nevertheless, one of the fundamental challenges facing the drone industry in developing countries next year, is how to operate within an environment where shipping of critical parts (amongst other things) has been disrupted due to the covid-19 pandemic. If the most critical items (propellers, batteries, sensors, etc. ) of the system are also associated with the longest lead time, this has a significant impact on the operating cost and service coverage that can be achieved. Unfortunately, there's no easy way of solving this issue except if it was envisioned as part of the development process. But this is seldom the ca...

GPS Navigation Ground Test #2 - Heading Error Computation Algorithm

This one is going to be quite short. Yesterday was the turn of the heading error algorithm to be tested. This heading error is calculated based on the heading the between two waypoints and heading measurement from the GPS module. This error will then be fed into a the roll controller as an input for roll command to reduce it to zero. But for the roll controller to work accordingly, the input must be right and within certain bounds. Same as the previous ground test, waypoints were loaded unto the autopilot and serial debug data was monitored using my Asus TF101 Tablet. It's worth saying that I managed to get serial data output straight from the LINUX command line . So the command line integration with VIM is complete. So it takes approximately under 10sec to upload and start debugging data of the autopilot. Sweet! Anyway, it was found that the GPS accuracy should be considered at 10-12m. Anything less than that and you'll be running for trouble. That is not a real conc...